Utilize the power of Spark to interact with the metadata on lakeFS. Possible use-cases include:
- Create a DataFrame for listing the objects in a specific commit or branch.
- Compute changes between two commits.
- Export your data for consumption outside lakeFS.
- Bulk operations on underlying storage.
Start Spark Shell / PySpark with the --packages
flag:
spark-shell --packages io.treeverse:lakefs-spark-client_2.12:0.1.0-SNAPSHOT
-
To read metadata from lakeFS, the client should be configured with your lakeFS endpoint and credentials, using the following Hadoop configurations:
Configuration Description spark.hadoop.lakefs.api.url
lakeFS API endpoint, e.g: http://lakefs.example.com/api/v1
spark.hadoop.lakefs.api.access_key
The access key to use for fetching metadata from lakeFS spark.hadoop.lakefs.api.secret_key
Corresponding lakeFS secret key -
The client will also directly interact with your storage using Hadoop FileSystem. Therefore, your Spark session must be able to access the underlying storage of your lakeFS repository. For instance, running as a user with a personal account on S3 (not in production) you might add:
Configuration Description spark.hadoop.fs.s3a.access.key
Access key to use for accessing underlying storage on S3 spark.hadoop.fs.s3a.secret.key
Corresponding secret key to use with S3 access key
-
Get a DataFrame for listing all objects in a commit:
import io.treeverse.clients.LakeFSContext val commitID = "a1b2c3d4" val df = LakeFSContext.newDF(spark, "example-repo", commitID) df.show /* output example: +------------+--------------------+--------------------+-------------------+----+ | key | address| etag| last_modified|size| +------------+--------------------+--------------------+-------------------+----+ | file_1 |791457df80a0465a8...|7b90878a7c9be5a27...|2021-03-05 11:23:30| 36| | file_2 |e15be8f6e2a74c329...|95bee987e9504e2c3...|2021-03-05 11:45:25| 36| | file_3 |f6089c25029240578...|32e2f296cb3867d57...|2021-03-07 13:43:19| 36| | file_4 |bef38ef97883445c8...|e920efe2bc220ffbb...|2021-03-07 13:43:11| 13| +------------+--------------------+--------------------+-------------------+----+ */
-
Run SQL queries on your metadata:
df.createOrReplaceTempView("files") spark.sql("SELECT DATE(last_modified), COUNT(*) FROM files GROUP BY 1 ORDER BY 1") /* output example: +----------+--------+ | dt|count(1)| +----------+--------+ |2021-03-05| 2| |2021-03-07| 2| +----------+--------+ */