Version Matrix

akka-http-metrics

Continuous Integration Maven Central Software License Scala Steward badge

Easily collect and expose metrics in your akka-http server.

The following implementations are supported:

Versions

Version Release date Akka Http version Scala versions
1.6.0 2021-05-07 10.2.4 2.13.5, 2.12.13
1.5.1 2021-02-16 10.2.3 2.13.4, 2.12.12
1.5.0 2021-01-12 10.2.2 2.13.4, 2.12.12
1.4.1 2020-12-14 10.2.2 2.13.4, 2.12.12
1.4.0 2020-12-12 10.2.2 2.13.4, 2.12.12
1.3.0 2020-11-09 10.2.1 2.13.3, 2.12.12
1.2.0 2020-08-29 10.2.0 2.13.3, 2.12.12

The complete list can be found in the CHANGELOG file.

Getting akka-http-metrics

Libraries are published to Maven Central. Add to your build.sbt:

libraryDependencies += "fr.davit" %% "akka-http-metrics-<backend>" % <version>

Server metrics

The library enables you to easily record the following metrics from an akka-http server into a registry. The following labeled metrics are recorded:

  • requests (counter) [method]
  • requests active (gauge) [method]
  • requests failures (counter) [method]
  • requests size (histogram) [method]
  • responses (counter) [method | path | status group]
  • responses errors [method | path | status group]
  • responses duration (histogram) [method | path | status group]
  • response size (histogram) [method | path | status group]
  • connections (counter)
  • connections active (gauge)

Record metrics from your akka server by creating an HttpMetricsServerBuilder with the newMeteredServerAt extension method located in HttpMetrics

import akka.actor.ActorSystem
import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._
import akka.http.scaladsl.server.Route
import fr.davit.akka.http.metrics.core.{HttpMetricsRegistry, HttpMetricsSettings}
import fr.davit.akka.http.metrics.core.HttpMetrics._ // import extension methods

implicit val system = ActorSystem()

val settings: HttpMetricsSettings = ... // concrete settings implementation

val registry: HttpMetricsRegistry = ... // concrete registry implementation

val route: Route = ... // your route

Http()
  .newMeteredServerAt("localhost", 8080, registry)
  .bindFlow(route)

Requests failure counter is incremented when no response could be emitted by the server (network error, ...)

By default, the response error counter will be incremented when the returned status code is an Server error (5xx). You can override this behaviour in the settings.

settings.withDefineError(_.status.isFailure)

In this example, all responses with status >= 400 are considered as errors.

For HTTP2 you must use the bind or bindSync on the HttpMetricsServerBuilder. In this case the connection metrics won't be available.

Http()
  .newMeteredServerAt("localhost", 8080)
  .bind(route)

Labels

By default, metrics labels are disabled. You can enable them in the settings.

settings
  .withIncludeMethodDimension(true)
  .withIncludePathDimension(true)
  .withIncludeStatusDimension(true)

You can also add additional static server-level dimensions to all metrics collected by the library. In the example below, the env label with prod dimension will be added.

import fr.davit.akka.http.metrics.core.Dimension

final case class EnvDimension(value: String) extends Dimension {
  override def key: String = "env"
}

settings.withServerDimensions(Seq(EnvDimension("prod")))

These key/value pairs will be added to all response size and response duration metrics.

It is up to the implementor to implement a class extending the Dimension trait.

Method

The method of the request is used as dimension on the metrics. eg. GET

Path

Matched path of the request is used as dimension on the metrics.

When enabled, all metrics will get unlabelled as path dimension by default, You must use the labelled path directives defined in HttpMetricsDirectives to set the dimension value.

You must also be careful about cardinality: see here. If your path contains unbounded dynamic segments, you must give an explicit label to override the dynamic part:

import fr.davit.akka.http.metrics.core.scaladsl.server.HttpMetricsDirectives._

val route = pathPrefixLabel("api") {
  pathLabeled("user" / JavaUUID, "user/:user-id") { userId =>
    ...
  }
}

Moreover, all unhandled requests will have path dimension set to unhandled.

Status group

The status group creates the following dimensions on the metrics: 1xx|2xx|3xx|4xx|5xx|other

Expose metrics

Expose the metrics from the registry on an http endpoint with the metrics directive.

import fr.davit.akka.http.metrics.core.scaladsl.server.HttpMetricsDirectives._

val route = (get & path("metrics"))(metrics(registry))

Of course, you will also need to have the implicit marshaller for your registry in scope.

Implementations

Datadog

metric name
requests requests_count
requests active requests_active
requests failures requests_failures_count
requests size requests_bytes
responses responses_count
responses errors responses_errors_count
responses duration responses_duration
responses size responses_bytes
connections connections_count
connections active connections_active

The DatadogRegistry is just a facade to publish to your StatsD server. The registry itself not located in the JVM, for this reason it is not possible to expose the metrics in your API.

Add to your build.sbt:

libraryDependencies += "fr.davit" %% "akka-http-metrics-datadog" % <version>

Create your registry

import com.timgroup.statsd.StatsDClient
import fr.davit.akka.http.metrics.core.HttpMetricsSettings
import fr.davit.akka.http.metrics.datadog.{DatadogRegistry, DatadogSettings}

val client: StatsDClient = ... // your statsd client
val settings: HttpMetricsSettings = DatadogSettings.default
val registry = DatadogRegistry(client, settings) // or DatadogRegistry(client) to use default settings

See datadog's documentation on how to create a StatsD client.

Dropwizard

metric name
requests requests
requests active requests.active
requests failures requests.failures
requests size requests.bytes
responses responses
responses errors responses.errors
responses duration responses.duration
responses size responses.bytes
connections connections
connections active connections.active

Important: The DropwizardRegistry does not support labels. This feature will be available with dropwizard v5, which development is paused at the moment.

Add to your build.sbt:

libraryDependencies += "fr.davit" %% "akka-http-metrics-dropwizard" % <version>
// or for dropwizard v5
libraryDependencies += "fr.davit" %% "akka-http-metrics-dropwizard-v5" % <version>

Create your registry

import com.codahale.metrics.MetricRegistry
import fr.davit.akka.http.metrics.core.HttpMetricsSettings
import fr.davit.akka.http.metrics.dropwizard.{DropwizardRegistry, DropwizardSettings}

val dropwizard: MetricRegistry = ... // your dropwizard registry
val settings: HttpMetricsSettings = DropwizardSettings.default
val registry = DropwizardRegistry(dropwizard, settings) // or DropwizardRegistry() to use a fresh registry & default settings

Expose the metrics

import fr.davit.akka.http.metrics.core.scaladsl.server.HttpMetricsDirectives._
import fr.davit.akka.http.metrics.dropwizard.marshalling.DropwizardMarshallers._

val route = (get & path("metrics"))(metrics(registry))

All metrics from the dropwizard metrics registry will be exposed. You can find some external exporters here. For instance, to expose some JVM metrics, you have to add the dedicated dependency and register the metrics set into your collector registry:

libraryDependencies += "com.codahale.metrics" % "metrics-jvm" % <version>
import com.codahale.metrics.jvm._

val dropwizard: MetricRegistry = ... // your dropwizard registry
dropwizard.register("jvm.gc", new GarbageCollectorMetricSet())
dropwizard.register("jvm.threads", new CachedThreadStatesGaugeSet(10, TimeUnit.SECONDS))
dropwizard.register("jvm.memory", new MemoryUsageGaugeSet())

val registry = DropwizardRegistry(dropwizard, settings)

Graphite

metric name
requests requests
requests active requests.active
requests failures requests.failures
requests size requests.bytes
responses responses
responses errors responses.errors
responses duration responses.duration
response size responses.bytes
connections connections
connections active connections.active

Add to your build.sbt:

libraryDependencies += "fr.davit" %% "akka-http-metrics-graphite" % <version>

Create your carbon client and your registry

import fr.davit.akka.http.metrics.core.HttpMetricsSettings
import fr.davit.akka.http.metrics.graphite.{CarbonClient, GraphiteRegistry, GraphiteSettings}

val carbonClient: CarbonClient = CarbonClient("hostname", 2003)
val settings: HttpMetricsSettings = GraphiteSettings.default
val registry = GraphiteRegistry(carbonClient, settings) // or PrometheusRegistry(carbonClient) to use default settings

Prometheus

metric name
requests requests_total
requests active requests_active
requests failures requests_failures_total
requests size requests_size_bytes
responses responses_total
responses errors responses_errors_total
responses duration responses_duration_seconds
responses size responses_size_bytes
connections connections_total
connections active connections_active

Add to your build.sbt:

libraryDependencies += "fr.davit" %% "akka-http-metrics-prometheus" % <version>

Create your registry

import io.prometheus.client.CollectorRegistry
import fr.davit.akka.http.metrics.prometheus.{PrometheusRegistry, PrometheusSettings}

val prometheus: CollectorRegistry = ... // your prometheus registry
val settings: PrometheusSettings = PrometheusSettings.default
val registry = PrometheusRegistry(prometheus, settings) // or PrometheusRegistry() to use the default registry & settings

You can fine-tune the histogram/summary configuration of buckets/quantiles for the request size, duration and response size metrics.

settings
  .withDurationConfig(Buckets(1, 2, 3, 5, 8, 13, 21, 34))
  .withReceivedBytesConfig(Quantiles(0.5, 0.75, 0.9, 0.95, 0.99))
  .withSentBytesConfig(PrometheusSettings.DefaultQuantiles)

Expose the metrics

import fr.davit.akka.http.metrics.core.scaladsl.server.HttpMetricsDirectives._
import fr.davit.akka.http.metrics.prometheus.marshalling.PrometheusMarshallers._

val route = (get & path("metrics"))(metrics(registry))

All metrics from the prometheus collector registry will be exposed. You can find some external exporters here. For instance, to expose some JVM metrics, you have to add the dedicated client dependency and initialize/register it to your collector registry:

libraryDependencies += "io.prometheus" % "simpleclient_hotspot" % <vesion>
import io.prometheus.client.hotspot.DefaultExports

val prometheus: CollectorRegistry = ... // your prometheus registry
DefaultExports.register(prometheus)  // or DefaultExports.initialize() to use the default registry