Version Matrix

Build Status CircleCI codecov

Quality Gate Status Maintainability Rating

Maven 2.12

Maven 2.13

Maven dotty (0.27.0-RC1)

What to use json-values for and when to use it

json-scala-values fits like a glove to do Functional Programming. All we need to program is values and functions to manipulate them. For those architectures that work with Jsons end-to-end it's extremely safe and efficient to have a persistent Json. Think of actors sending Json messages one to each other for example.

You can still just use json-values for testing if you do Property-Based-Testing with ScalaCheck. Creating Json generators with json-values is really easy.

How do we make changes to immutable structures or values in an inexpensive way? Using persistent data structures. Copy-on-write is inefficient, and the performance goes down as you produce new values. Why don't we have a persistent Json? This is the question I asked myself when I got into functional programming. Since I found out no answer, I decided to implement a persistent Json.


Welcome to json-values! A Json is a well-known and simple data structure, but without immutability and all the benefits that it brings to your code, there is still something missing. The Json implemented in json-values is the first persistent Json in the JVM ever. It uses immutable.Map.HashMap and immutable.Seq.Vector as the underlying persistent data structures. It provides a simple and declarative API to manipulate Json with no ceremony.


A JsPath represents a location of a specific value within a Json. It's a sequence of Position, being a position either a Key or an Index.

import json.value.Preamble._
val a:JsPath = "a" / "b" / "c"
val b:JsPath = 0 / 1

val ahead:Position = a.head
ahead.isKey == true

val atail:JsPath = a.tail
atail.head = Key("b")
atail.last = Key("c")

val bhead:Position = b.head
bhead.isIndex == true

//appending paths
val c:JsPath = a // b
c.head == Key("a")
c.last == Index(1)

//prepending paths
val d:JsPath = x \\ y
d.head == Index(0)
d.last == Key("c")

The index -1 points to the last element of an array.


Every element in a Json is a JsValue. There is a specific type for each value described in The best way of exploring that type is applying an exhaustive pattern matching:

val jsvalue: JsValue = ...

jsvalue match
  case primitive: JsPrimitive => primitive match
    case JsStr(json.value) => println("I'm a string")
    case number: JsNumber => number match
      case JsInt(json.value) => println("I'm an integer")
      case JsDouble(json.value) => println("I'm a double")
      case JsLong(json.value) => println("I'm a long")
      case JsBigDec(json.value) => println("I'm a big decimal")
      case JsBigInt(json.value) => println("I'm a big integer")
    case JsBool(json.value) => println("I'm a boolean")
    case JsNull => println("I'm null")
  case json: Json[_] => json match
    case o: JsObj => println("I'm an object")
    case a: JsArray => println("I'm an array")
  case JsNothing => println("I'm a special type!")

The singleton JsNothing represents nothing. It's a convenient type that makes certain functions that return a JsValue total on their arguments. For example, the Json function

def apply(path:JsPath):JsValue

is total because it returns a JsValue for every JsPath. If there is no element located at the given path, it returns JsNothing. On the other hand, inserting JsNothing at a path in a Json is like removing the element located at that path.

Creating Jsons

There are several ways of creating Jsons:

  • Using apply methods of companion objects.
  • Parsing an array of bytes, a string or an input stream. When possible, it's always better to work on byte level. If the schema of the Json is known, the fastest way is defining a spec.
  • Creating an empty object and then using the API to insert values.
Creating JsObjs

From a Map:

import json.value.JsObj
import json.value.JsArray
import json.value.Preamble._

val person = JsObj("@type" -> "Person",
                   "age" -> 37,
                   "name" -> "Rafael",
                   "gender" -> "MALE",
                   "address" -> JsObj("location" -> JsArray(40.416775,
                   "book_ids" -> JsArray("00001",

From a sequence of path/value pairs:

import json.value.Preamble._

      ("age", 37),
      ("name", "Rafael"),
      ("gender", "MALE"),
      ("address" / "location" / 0, 40.416775),
      ("address" / "location" / 1, 40.416775),
      ("books_ids" / 0, "00001"),
      ("books_ids" / 1, "00002"),

Parsing a string or array of bytes, and the schema of the Json is unknown:

val str:String = ??? 
val bytes:Array[Byte] = ??? 
val is:InputStream = ??? 

val a:Either[InvalidJson,JsObj] = JsObjParser.parsing(str)
val b:Either[InvalidJson,JsObj] = JsObjParser.parsing(bytes)
val c:Try[JsObj] = JsObjParser.parsing(is)

Parsing a string or array of bytes, and the schema of the Json is known. We can define a spec to define the structure of the Json object (we'll get into details later on). This way, as soon as a parsed value doesn't satisfy a spec, the process ends with an error. On the other hand, if the parsing succeeds, we already have a validated Json.

val spec:JsObjSpec = JsObjSpec("a" -> int,
                               "b" -> string,
                               "c" -> bool,
                               "d" -> JsObjSpec("e" -> long
                                                "f" -> JsArraySpec(decimal,decimal)
                               "e" -> arrayOfStr

val parser:JsObjParser = JsObjParser(spec) //reuse this object

val str:String = "..."
val bytes:Array[Byte] = ...
val is:InputStream = ...

val a:Either[InvalidJson,JsObj] = parser.parsing(str)
val b:Either[InvalidJson,JsObj] = parser.parsing(bytes)
val c:Try[JsObj] = parser.parsing(is)

With the API:

import json.value.Preamble._

JsObj.empty.inserted("a" / "b" / 0, 1)
           .inserted("a" / "b" / 1, 2)
           .inserted("a" / "c", "hi")
Creating JsArrays

From a sequence of values:

import json.value.Preamble._

JsArray("a", 1, JsObj("a" -> 1), JsNull, JsArr(0,1))

From a sequence of path/value pairs:

import json.value.Preamble._

JsArray((0, "a"),
        (1, 1),
        (2 / "a", 1),
        (3, JsNull),
        (4 / 0, 0),
        (4 / 1, 1)

Parsing a string or array of bytes, and the schema of the Json is unknown

val str:String = "..."
val bytes:Array[Byte] = ...
val is:InputStream = ...

val a:Either[InvalidJson,JsArray] = JsArrayParser.parsing(str)
val b:Either[InvalidJson,JsArray] = JsArrayParser.parsing(bytes)
val c:Try[JsArray] = JsArrayParser.parsing(is)

Parsing a string or array of bytes, and the schema of the Json is known. We can define a spec to define the structure of the Json array(we'll get into details later on):

val spec:JsArraySpec = JsArraySpec(str,

val parser:JsArrayParser = JsArrayParser(spec) //reuse this object

val str:String = "..."
val bytes:Array[Byte] = ...
val is:InputStream = ...

val a:Either[InvalidJson,JsArray] = parser.parsing(str)
val b:Either[InvalidJson,JsArray] = parser.parsing(bytes)
val c:Try[JsArray] = parser.parsing(is)

With the API:

             .appended(JsOb("a" -> 1))

Putting data in and getting data out

There are one function to put data in a Json specifying a path and a value:

JsObj   inserted(path:JsPath, value:JsValue, padWith:JsValue = JsNull):JsObj
JsArray inserted(path:JsPath, value:JsValue, padWith:JsValue = JsNull):JsArray

The inserted function always inserts the value at the specified path, creating any needed container and padding arrays when necessary.

json.inserting(path, value)(path) == value // always true: if you insert a value, you'll get it back

JsObj.empty.inserted("a", 1) == JsObj("a" -> 1)
JsObj.empty.inserted("a" / "b", 1) == JsObj("a" -> JsObj("b" -> 1))
JsObj.empty.inserted("a" / 2, "z", pathWith="") = JsObj("a" -> JsArray("","","z"))

New elements can be appended and prepended to a JsArray:





Filter,map and reduce

filterAll, filterAllKeys, mapAll, mapAllKeys and reduceAll functions traverse the whole json recursively. All these functions are functors (don't change the structure of the Json).

On the other hand, the functions filter, filterKeys, map, mapKeys and reduce traverse the first level of the json.

val toLowerCase:String => String = _.toLowerCase

json mapAllKeys toLowerCase

val trimIfStr = (x: JsPrimitive) => if (x.isStr) else x

array mapAll trimIfStr

val isNotNull:JsPrimitive => Boolean = _.isNotNull

json filterAll isNotNull

Flattening a Json

A Json can be seen as a set of (JsPath,JsValue) pairs. The flatten function returns a lazy list of pairs:

Json flatten:LazyList[(JsPath,JsValue)]

Returning a lazy list decouples the consumers from the producer. No matter the number of pairs that will be consumed, the flatten implementation doesn't change.

Let's put an example:

val obj = JsObj("a" -> 1,
                "b" -> JsArray(1,"m", JsObj("c" -> true, "d" -> JsObj.empty))

obj.flatten(println) // all the pairs are consumed

// (a, 1)
// (b / 0, 1)
// (b / 1, "m")
// (b / 2 / c, true)
// (b / 2 / d, {})


A Json spec specifies the structure of a Json. Specs have attractive qualities like:

  • Easy to write. You can define Specs in the same way you define a raw Json.
  • Easy to compose. You glue them together and create new ones easily.
  • Easy to extend. There are predefined specs that will cover the most common scenarios, but, any imaginable spec can be created from predicates.

Let's go straight to the point and put an example:

import json.value.Preamble._
import json.value.spec.Preamble._
import json.value.spec.JsObjSpec._
import json.value.spec.JsArraySpec._

val personSpec = JsObjSpec("@type" -> "Person",
                           "age" -> int,
                           "name" -> str,
                           "gender" -> enum("MALE","FEMALE"),
                           "address" -> JsObjSpec("location" -> JsArraySpec(decimal,
                           "books_id" -> arrayOfStr,
                           * -> any

person.validate(personSpec) == Seq.empty  // no errors

I think it's self-explanatory and as it was mentioned, defining a spec is as simple as defining a Json. It's declarative and concise, with no ceremony at all. The binding * -> any means: any value different than the specified is allowed.

Consider the following specs:

def objSpec = JsObjSpec("a" -> "hi")

def arrSpec = JsArraySpec(1, any, "a")

The only Json that conforms the first spec is JsObj("a" -> "hi"). On the other hand, the second spec defines an array of three elements where the first one is the constant 1, the second one is any value, and the third one is the constant "a". Arrays like JsArray(1,null,"a"), JsArray(1,true,"a") or JsArray(1,JsObj.empty,"a") conform that spec.

Reusing and composing specs is very straightforward. Spec composition is a good way of creating complex specs. You define little blocks and glue them together. Let's put an example:

def legalAge = JsValueSpec((value: JsValue) => if (value.isInt(_ > 16)) Valid else Invalid("Too young"))

def address = JsObjSpec("street" -> string,
                        "number" -> int,

def user = JsObjSpec("name" -> string,
                     "id" -> string

def userWithAddress = user ++ JsObjSpec("address" -> address)

def userWithOptionalAddress = user ++ JsObjSpec("address" -> address.?)

Future and Try monads

Let's compose a Json out of different functions that can fail and are modeled with a Try computation.

import json.value.Preamble._
import json.value.exc.Preamble._
import json.value.exc.JsObjTry._
import json.value.exc.JsArrayTry._

val address:Try[JsObj] = ???
val email:Try[String] = ???
val latitude:Try[Double] = ???
val longitude:Try[Double] = ???

val person:Try[JsObj] = JsObjTry("type" -> "@Person",
                                 "name" -> "Rafael",
                                 "address" -> address,
                                 "email" -> email,
                                 "company_location" -> JsArrayTry(latitude,longitude)

Or given a Json, we can create a try using the inserted function:

val obj:JsObj = ???

val tryObj:Try[JsObj] = obj.inserted("company_location" / 0, latitude)
                           .inserted("company_location" / 1, longitude)

Let's conquer the future! We can define futures in the same way and mix them with Try computations!

import json.value.Preamble._
import json.value.future.Preamble._
import json.value.future.JsObjFuture._
import json.value.future.JsArrayFuture._

val address:Future[JsObj] = ???
val email:Try[String] = ???
val latitude:Future[Double] = ???
val longitude:Try[Double] = ???

val person:Future[JsObj] = JsObjFeature("type" -> "@Person",
                                        "name" -> "Rafael",
                                        "address" -> address,
                                        "email" -> email,
                                        "company_location" -> JsArrayFuture(latitude,longitude)

Or given a Json, we can create a future using the inserted function:

val latitude:Future[Double] = ???
val longitude:Try[Double] = ???

val obj:JsObj = ???

val future:Future[JsObj] = obj.inserted("company_location" / 0, latitude)
                              .inserted("company_location" / 1, longitude)


Let me go straight to the point. I'd argue that this is the most declarative, concise, composable, and beautiful Json generator in the whole wide world! I used property-based-testing with ScalaCheck to test json-values. I developed several Json generators.

If you practice property-based testing and use ScalaCheck, you'll be able to design composable Json generators very quickly and naturally, as if you were writing out a Json.

Defining custom Json generators

Let's create a person generator:

import json.value.JsObj
import json.value.Preamble._
import json.value.gen.Preamble._
import json.value.gen.{JsObjGen,JsArrayGen}
import org.scalacheck.Gen

def nameGen: Gen[String] = ???
def birthDateGen: Gen[String] = ???
def latitudeGen: Gen[Double] = ???
def longitudeGen: Gen[Double] = ???
def emailGen: Gen[String] = ???
def countryGen: Gen[String] = ???

def personGen:Gen[JsObj] = JsObjGen("@type" -> "person",
                                    "name" -> nameGen,
                                    "birth_date" -> birthDateGen,
                                    "email" -> emailGen,
                                    "gender" -> Gen.oneOf("Male",
                                     "address" -> JsObjGen("country" -> countryGen,
                                                           "location" -> JsArrayGen(latitudeGen,

If you are using other Json library different than json-values, you can still use this generator mapping the generated json into its string representation, and then creating your object from that string:

import x.y.z.MyJson

def myPersonGen:Gen[MyJson] =

Another way of creating Jsons in json-values is from pairs of paths and values:

import json.value.JsObj
import json.value.JsPath._
import json.value.Preamble._

JsObj(("@type" -> "person"),
      ("name" -> "Rafael Merino García"),
      ("birth_date" -> "13-03-1982"),
      ("email" -> ""),
      ("gender" -> "Male"),
      ("address" / "country" -> "ES"),
      ("address" / "location" / 0 -> 40.1693500),
      ("address" / "location" / 1 -> -4.2154900)

And again, we can create Json generators following the same approach:

import json.value._
import json.value.JsPath._
import json.value.Preamble._
import json.value.gen._
import json.value.gen.Preamble.{_, given,_}
import org.scalacheck.Gen

def nameGen: Gen[String] = ???
def birthDateGen: Gen[String] = ???
def latitudeGen: Gen[Double] = ???
def longitudeGen: Gen[Double] = ???
def emailGen: Gen[String] = ???
def countryGen: Gen[String] = ???

JsObjGen.fromPairs(("@type" -> "person"),
                  ("name" -> nameGen),
                  ("birth_date" -> birthDateGen),
                  ("email" -> emailGen),
                  ("gender" -> Gen.oneOf("Male",
                  ("address" / "country" -> countryGen),
                  ("address" / "location" / 0 -> latitudeGen),
                  ("address" / "location" / 1 -> longitudeGen)

A typical scenario is when we want some elements not to be always generated, which can be easily achieved using the special value JsNothing. Inserting JsNothing in a Json at a path is like removing the element. Taking that into account, let's create a generator that produces Jsons without the key name with a probability of 50 percent:

def nameGen: Gen[JsStr] = ???

def optNameGen: Gen[JsValue] = Gen.oneOf(JsNothing,nameGen)

JsObjGen("@type" -> "person",
         "name" -> optNameGen

//syntactic sugar to do the same thing but typing less!

JsObjGen("@type" -> "person",
         "name" ->  ?(nameGen)

And we can change that probability using the ScalaCheck function Gen.frequencies:

def nameGen: Gen[JsStr] = ???

def optNameGen: Gen[JsValue] = Gen.frequencies((10,JsNothing),

JsObjGen("@type" -> "person",
         "name" ->  optNameGen,

//syntactic sugar to do the same thing but typing less!

JsObjGen("@type" -> "person",
         "name" ->  ?(90,nameGen),
Defining random Json generators

There are times when you are only interested in generating random Jsons; after all, every function of a Json API has to work, no matter the Json it's tested with.

import json.value.gen.{RandomJsObjGen,RandomJsArrayGen}

//produces any imaginable Json object
def randomObjGen: Gen[JsObj] = RandomJsObjGen()

//produces any imaginable Json array
def randomArrayGen: Gen[JsArray] = RandomJsArrayGen()

These random generators are also customizable to some extent. The following named parameters can be passed in:

  • arrLengthGen: Gen[Int]: to control the length of arrays.
  • objSizeGen: Gen[Int]: to control the size of objects. Take into account that if JsNothing is generated, no element is inserted and the final size of the object may be lower than the returned by this generator:
val gen = RandomJsObjGen(objSizeGen= Gen.const(5),
                         objPrimitiveGen = PrimitiveGen(strGen=Gen.oneOf(JsNothing,JsStr("a")))

In the previous example, for those cases where JsNothing is generated, the size of the Json object will be four and not five.

  • keyGen: Gen[String]: to control the name of the keys in objects.
  • arrValueFreq: ValueFreq: to control the type of the elements generated in arrays. For primitive types, values are generated by the corresponding generator defined in the param arrPrimitiveGen. Nested objects can be generated, i.e. array of objects or array of arrays and so on. Nested objects have to be configured carefully to not blow up the stack due to recursion.
  • arrPrimitiveGen: PrimitiveGen: to control the value of the primitive types generated in arrays.
  • objValueFreq: ValueFreq: to control the type of the elements generated in objects. For primitive types, the value are generated by the generator defined in the param objPrimitiveGen.
  • objPrimitiveGen: PrimitiveGen: to control the value of the primitive types generated in objects. Find below the definition of the classes PrimitiveGen and ValueFreq:
val ALPHABET: Seq[String] = "abcdefghijklmnopqrstuvwzyz".split("").toIndexedSeq

case class PrimitiveGen(strGen: Gen[String] = Gen.oneOf(ALPHABET),
                        intGen: Gen[Int] = Arbitrary.arbitrary[Int],
                        longGen: Gen[Long] = Arbitrary.arbitrary[Long],
                        doubleGen: Gen[Double] = Arbitrary.arbitrary[Double],
                        floatGen: Gen[Float] = Arbitrary.arbitrary[Float],
                        boolGen: Gen[Boolean] = Arbitrary.arbitrary[Boolean],
                        bigIntGen: Gen[BigInt] = Arbitrary.arbitrary[BigInt],
                        bigDecGen: Gen[BigDecimal] = Arbitrary.arbitrary[BigDecimal]

case class ValueFreq(obj: Int = 1,
                     arr: Int = 1,
                     str: Int = 5,
                     int: Int = 5,
                     long: Int = 5,
                     double: Int = 5,
                     bigInt: Int = 5,
                     bigDec: Int = 5,
                     bool: Int = 5,
                     `null`: Int = 5

As you may notice, the class ValueFreq has two params obj and arr that allows you to generate nested Jsons. The default frequency assigned to them is lower than the rest, otherwise the process can diverge and a StackOverFlowException would be thrown.

To make it clearer, let's define a JsObj generator with the following specifications:

  • max size of 10
  • keys of three letters from the alphabet
  • values are String or Int or JsArray with the same probability, where:
    • String values are colors
    • Int values are numbers between -100 y 100
    • JsArrays are never empty, max length of 5, values are either arbitrary booleans or null with a probability of 90% and 10% respectively
def arrLengthGen:Gen[Int] = Gen.choose(1,5)
def objSizeGen:Gen[Int] = Gen.choose(0,10)
def letterGen:Gen[String] = Gen.oneOf(ALPHABET)
def keyGen: Gen[String] = for {
                                a <- letterGen
                                b <- letterGen
                                c <- letterGen
                              } yield s"$a$b$c"

def objectValueFreq:ValueFreq = ValueFreq(arr = 1,
                                          str = 1,
                                          obj = 0,
                                          int = 1,
                                          long = 0,
                                          double = 0,
                                          bigInt = 0,
                                          bigDec = 0,
                                          bool = 0,
                                          `null` = 0

def objectPrimitiveGen:PrimitiveGen = PrimitiveGen(strGen = Gen.oneOf("blue","red","brown"),
                                                   intGen = Gen.choose(-100,100)

def arrayValueFreq:ValueFreq = ValueFreq(arr = 0,
                                         str = 0,
                                         obj = 0,
                                         int = 0,
                                         long = 0,
                                         double = 0,
                                         bigInt = 0,
                                         bigDec = 0,
                                         bool = 9,
                                         `null` = 1

def jsonGen:Gen[JsObj] = RandomJsObjGen(objValueFreq = objectValueFreq,
                                        objPrimitiveGen = objectPrimitiveGen,
                                        keyGen = keyGen,
                                        objSizeGen = objSizeGen,
                                        arrValueFreq = arrayValueFreq,
                                        arrLengthGen = arrLengthGen
Composing Json generators

Composing Json generators is key in order to handle complexity and reuse code avoiding repetition. There are two ways, inserting pairs into generators and joining generators:

def addressGen:Gen[JsObj] = JsObjGen("street" -> streetGen,
                                     "city" -> cityGen,
                                     "zip_code" -> zipCodeGen

//let's insert location generators (JsPath,Gen[JsValue]) into our addressGen
def addressWithLocationGen:Gen[JsObj] = JsObjGen.inserted(addressGenerator,
                                                          ("location" / 0, latitudeGen),
                                                          ("location" / 1, longitudeGen)

def namesGen = JsObjGen("family_name" -> familyNameGen,
                        "given_name" -> givenNameGen)

def contactGen = JsObjGen("email" -> emailGen,
                          "phone" -> phoneGen,
                          "twitter_handle" -> handleGen

def clientGen = JsObjGen.concat(namesGen,

As you can see defining a future, try, spec and a generator is as simple as defining a raw Json.


Optics solve a lot of very common data-manipulation problems in a composable and concise way. json-values uses monocle

import json.value.JsObj
import json.value.Preamble._

val obj = JsObj("name" -> "Rafael",
                "age" -> 30,
                "address" -> JsObj("city" -> "Madrid",
                                   "location" -> JsArray(49.445,38.989)


A Prism is an optic used to select part of a sum type, in our case, one of the types of JsValue.

// JsStr.prism :: Prism[JsValue,String]

val toLowerCase = JsStr.prism.modify(_.toLowerCase)
// JsValue => JsValue

val trim = JsStr.prism.modify(_.trim)
// JsValue => JsValue

val isNotEmpty = JsStr.prism.exist(_ != "")
// JsValue => JsValue

// prism and map/filter are good friends:

obj map toLowerCase

obj map trim

obj filter isNotEmpty 

// composing prism

// monocle.std.string.stringToInt :: monocle.Prism[String,Int]

val jsStrToInt = JsStr.prism composePrism stringToInt
// monocle.Prism[JsValue,Int]

// Option[Int] = Some(100)

Lenses focuses a single piece of data within a larger structure. In our case, a JsValue withing a Json object or array. A Lens must never fail to get or modify that focus. If you're an user of json-values, you may know the special type JsNothing. It has two properties that make possible to define lawful lenses:

  • When getting a value, JsNothing is returned if the element is not found:
obj("c" / "d") == JsNothing
  • If JsNothing is inserted at a path where a value exists, it is removed:
obj.inserted("name",JsNothing)("name") == JsNothing

Implementing accessors with lenses:

val name = JsObj.accessor("name")                
// name: monocle.Lens[JsObj,JsValue]

val city = JsObj.accessor("address" / "city")                
// city: monocle.Lens[JsObj,JsValue] 

val latitude = JsObj.accessor("address" / "location" / 0)                
// latitude: monocle.Lens[JsObj,JsValue]

val longitude = JsObj.accessor("address" / "location" / 1)                
// longitude: monocle.Lens[JsObj,JsValue]

If you prefer working with more specific types than JsValue, an Optional per type can
be defined composing lenses and prisms. Optionals are like lenses but the element that the Optional focuses on may not exist. For example, getting a string from a Json can fail if no element is found or it's not a string:

val name = JsObj.accessor("name") 

val maybeName = name composePrism JsStr.prism
// monocle.Optional[JsObj,String]

// Some("Rafael")

// composing optionals

// Some("RAFAEL") 

Optics make data-manipulation more composable and concise. For example, the previous example:

val trimIfStr = (x: JsPrimitive) => if (x.isStr) else x

obj mapAll trimIfStr

could have been written using a Prism:

import json.value.JsStr
// monocle.Prism[JsValue,String]

obj mapAll JsStr.prism.modify(_.trim)

which is more functional.


The library is compatible with Scala 2.12, 2.13 and Dotty. Each version is maintained in a separate branch. The reason is because all the supported versions are quite different and the library itself is different as well to embrace all the new features and idioms introduced in scala 2.13 and Dotty.


It's built against 2.12 and 2.13 versions:

Doubling the first % you can tell sbt that it should append the current version of Scala being used to build the library to the dependency’s name:

libraryDependencies += "com.github.imrafaelmerino" %% "json-scala-values" % "4.0.0" % "test"

Dotty (0.27.0-RC1)

It's maintained in the branch dotty

libraryDependencies += "com.github.imrafaelmerino" %% "json-dotty-values" % "4.0.0"


Parsing a string with a spec returns a validated Json. That's why I've compared json-values with other libraries that perform a Json validation as well:

First benchmark is deserializing a string or array of bytes into a Json: TODO

Second benchmark is serializing a Json into a string or array of bytes: TODO

Related projects

json-values was first developed in Java. It uses Jackson to parse a string/bytes into a stream of tokens and dsl-sjon to parse a string/bytes given a spec.

Release process

Every time a tagged commit is pushed into master, a Travis CI build will be triggered automatically and start the release process, deploying to Maven repositories and GitHub Releases. See the Travis conf file .travis.yml for further details. On the other hand, the master branch is read-only, and all the commits should be pushed to master through pull requests.

If you like the library, you can let me know by starring it. It really helps. If not, much better, it means json-values can get better, your feedback we'll be more than welcoming.