Enabling Continuous Data Processing with Apache Spark and Azure Event Hubs
- apache-spark
- eventhubs
- continuous
- kafka
- bigdata
- spark-streaming
- event-hubs
- microsoft
- spark
- stream
- apache
- streaming
- ingestion
- scala
- databricks
- connector
- structured-streaming
- azure
- real-time
Scala versions:
2.11
spark-streaming-eventhubs 1.6.2
Group ID:
com.microsoft.azure
Artifact ID:
spark-streaming-eventhubs_2.10
Version:
1.6.2
Release Date:
Nov 28, 2016
Licenses:
Files:
Developers:
libraryDependencies += "com.microsoft.azure" %% "spark-streaming-eventhubs" % "1.6.2"
ivy"com.microsoft.azure::spark-streaming-eventhubs:1.6.2"
//> using dep "com.microsoft.azure::spark-streaming-eventhubs:1.6.2"
import $ivy.`com.microsoft.azure::spark-streaming-eventhubs:1.6.2`
<dependency> <groupId>com.microsoft.azure</groupId> <artifactId>spark-streaming-eventhubs_2.10</artifactId> <version>1.6.2</version> </dependency>
compile group: 'com.microsoft.azure', name: 'spark-streaming-eventhubs_2.10', version: '1.6.2'