Enabling Continuous Data Processing with Apache Spark and Azure Event Hubs
- stream
 - apache
 - scala
 - streaming
 - continuous
 - eventhubs
 - event-hubs
 - azure
 - ingestion
 - apache-spark
 - spark-streaming
 - microsoft
 - real-time
 - spark
 - databricks
 - structured-streaming
 - kafka
 - bigdata
 - connector
 
              Scala versions:
              
                2.11
              
            
          
    
          
    
          
    
          
    
          
        azure-eventhubs-spark 2.3.0-PREVIEW
Group ID:
     com.microsoft.azure 
  Artifact ID:
     azure-eventhubs-spark_2.11 
  Version:
     2.3.0-PREVIEW 
  Release Date:
     Mar 2, 2018 
  Licenses:
    
  Files:
    
  Developers:
    
  libraryDependencies += "com.microsoft.azure" %% "azure-eventhubs-spark" % "2.3.0-PREVIEW"
ivy"com.microsoft.azure::azure-eventhubs-spark:2.3.0-PREVIEW"
//> using dep "com.microsoft.azure::azure-eventhubs-spark:2.3.0-PREVIEW"
import $ivy.`com.microsoft.azure::azure-eventhubs-spark:2.3.0-PREVIEW`
<dependency> <groupId>com.microsoft.azure</groupId> <artifactId>azure-eventhubs-spark_2.11</artifactId> <version>2.3.0-PREVIEW</version> </dependency>
compile group: 'com.microsoft.azure', name: 'azure-eventhubs-spark_2.11', version: '2.3.0-PREVIEW'